A sandwich system of two steel faces and a polyurethane core is studied as a renovation system for orthotropic steel bridge decks. An experimental program has been carried out aiming to better understand the sandwich beam flexural behavior. The temperature significantly affects the sandwich flexural behavior. Increase in the temperature decreases the sandwich stiffness and strength. The stiffness is more difficult to predict at high temperatures due to the viscoelastic behavior of the core. Stiffer and stronger renovation solutions can be achieved by putting the extra weight on the core thickness rather than on the faces thickness. Stresses on the deck plate can be reduced by 60-95% using this renovation system. © The Author(s) 2010.